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Chapter 1

Introduction

Since the discovery of quantum mechanics a century ago it has been a task
for experimental physicists how to isolate and investigate single quantum sys-
tems, but with the invention of the quadrupole mass filter [1] by Wolfgang
Paul it was suddenly possible with trapped atoms. Paul’s quadrupole mass
filter used a set of oscillating potentials to confine ions in two dimensions
and with small modifications it has been possible to confine ions in three
dimensions. This three dimensional trap is denoted as the Paul trap [2].

With the invention of traps such as the Paul trap and lasers it was now
possible to confine and manipulate atoms and Cirac and Zoller implemented
a controlled-NOT quantum gate in [3] which was realized experimentally by
the NIST group [4]. It was now possible to construct logic gates where one
exploits the fact that external and internal states in ion traps can be made
to interact by lasers.

The Dicke model [5] is a well known model describing the collective be-
haviour of N two-level systems. It has received renewed interest because it
exhibits quantum phase transitions and multi-partite entanglement. Phase
transitions are well known from nature due to thermal fluctuations [6]. In
the limit when the temperature goes to zero these fluctuations disappears,
but now quantum fluctuations have an influence on the system and can drive
a phase transition, denoted as a quantum phase transition [7] A lot of ex-
citing physics happens in these quantum phase transitions. For instance is
symmetry breaking observed, see for instance [8, 9, 10] in phase transitions
in the Dicke model. Symmetry broken states are a paradigm of condensed
matter physics [6, 11] and are of great interest.

Reiter and Sørensen have in [12] derived an effective operator formalism,
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which allows the user to exploit adiabatic elimination of the excited levels to
get an effective dissipation operator and it is hence possible to engineer the
dissipation. This allows one to investigate quantum systems as a function
of the dissipation in the same way as a function of laser detunings, laser
strengths, etc.

The starting point of this thesis will be the Dicke model realized in an ion trap
and investigate dissipative phase transitions in this system. As an extension
to the Dicke model two new concepts are added to the standard Dicke model.
The first is sideband cooling in the hope it increases stability and the other is
another laser driving which change the dynamics of the system. The aim of
this thesis is to produce phase diagrams and to characterize the phases and
show how experimantalists can make experiments and see whether nature be-
haves as this thesis predicts. There will hence be a focus on stability and how
the stability can be increased in order for the experiments to run more easily.

The outline of this thesis is

Chapter 1: Presents the motivation behind this thesis along with the gen-
eral outline.

Chapter 2: Introduces necessary background information form quantum
mechanics and quantum optics.

Chapter 3: Introduces the reader to ion traps and a mathematically de-
scription of open system and shows the derivation of the Hamiltonian de-
scribing the system under investigation.

Chapter 4: Describes the tools developed for this thesis and presents results
of the standard Dicke model.

Chapter 5: Uses the tools developed in chapter 5 and presents results of
the extended Dicke model.

Chapter 6: Goes into further detail of the chaotic phase seen in chapter 5+6.

Chapter 7: Concludes on the findings from chapter 5-7 and discusses further
options for the work started with this thesis.
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Chapter 2

Fundamentals

In this chapter relevant elements from quantum mechanics and quantum
optics will be presented. First a short introduction on the transition from
classical mechanics to quantum mechanics. This will be followed by a short
introduction to key elemtents from quantum mechanics and the chapter will
finally be ended with a quantization of the electromagnetic field.

2.1 From classical mechanics to quantum me-

chanics

In classical mechanics a particle of mass m constrained to move in a definite
direction and subject to a specified force F (x, t) will move in a determin-
istic way, which makes it possible to determine its position at all times if
we know the initial conditions [13]. In quantum mechanics this determinism
disappears and one is left with state vectors, which describe the possible out-
comes of for instance position. Quantum mechanics forbids the observer to
know the position and velocity at the same time (in opposition to Newtonian
mechanics) due to Heisenberg’s uncertainty principle [13]

∆x∆p ≥ ~
2
, (2.1)

where ∆x is the uncertainty of the position and ∆p is the uncertainty of the
momentum and ~ is Planck’s constant.

In the early days of quantum mechanics one treated particles as quantum
and the field as semi-classical. This situation is often denoted as the first
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quantization [14], where the deterministic description of nature is replaced
by state vectors.

2.2 State vectors

In quantum mechanics a system is said to be in a given state and the complete
knowledge of a system is contained in its state vector |ψ〉, which is an element
in the Hilbert space H. It is possible to expand this state vector |ψ〉 in any
orthonormal basis {|n〉} of the Hilbert space [15]

|ψ〉 =
∑
n

|n〉〈n|ψ〉, (2.2)

where 〈n|ψ〉 often is denoted as cn for the projection of |ψ〉 on the basis
state |n〉. An interpretation of cn is that the probability of the system to
be in state |n〉 is given by Pn = |cn|2. This statistical interpretation of the
wave function (or state vector) emphasizes the difference between Newtonian
mechanics and quantum mechanics. Another feature of the wave function is
the possibility to visualize a quantum state, see section (2.4).

2.3 Observables

Observables in quantum mechanics are given by hermitian operators acting
on states of the Hilbert space. For an operator Ô to be hermitian it is
required that for any two states |ψ1,2〉 in the Hilbert space we have [15]

〈ψ1|Ô|ψ2〉 = (〈ψ2|Ô|ψ1〉)∗. (2.3)

The expectation value of the observable Ô when the system is in the state
|ψ〉 is

〈Ô〉 = 〈ψ|Ô|ψ〉. (2.4)

A special case is when the operator Ô is diagonal in the basis {|n〉}, where
the following applies

Ô|ψ〉 = Oα|ψ〉 (2.5)

⇒ 〈Ô〉 =
∑
α

Oα|cα|2 =
∑
α

Oαpα, (2.6)
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where On denotes the nth eigenvalue of the operator Ô and Pn = |cn|2 is the
probability to be in state n.

2.4 Wave functions

Another way to represent a quantum state is by the mentioned wave function,
which is a representation of the state in position space. The position space
is spanned by position eigenkets |x′〉 satisfying [13]

x̂|x′〉 = x′|x′〉. (2.7)

Space is not considered discrete and a given arbitrary state |φ〉 can be ex-
panded as

|φ〉 =

∞∫
−∞

dx |x〉〈x|φ〉 (2.8)

The expansion coefficient 〈x|φ〉 is called the wave function of the state |φ〉 and
is usually denoted ψφ(x). A nice treat of the wave function representation
is the possibility to visualize a given quantum state. The Fock states (or
number states) |n〉 is for instance given by [13]

ψn(x) =

(
1

πλ2

)1/4
1√
2nn!

Hn

(x
λ

)
e−x

2/2λ2 , (2.9)

where λ =
√

~/ω and Hn(ξ) are the Hermite polynomials. The wave function
for n = 1, 2 and 3 are seen in figure (2.1).
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Figure 2.1: The wave functions of the first three Fock states above vacuum.

It is possible to go from the position space to momentum space. The wave
function in momentum space ψφ(p) is obtained from the wave function in
position space by a Fourier transform

ψφ(p) =
1√
2π~

∞∫
−∞

dx exp(−ipx/~)ψφ(x). (2.10)

2.5 Time evolution

There are several ways to introduce time evolution in quantum mechanics and
one speaks of which ”picture” one observes from. Is it in the Schrödinger’s
picture where the state vectors evolves in time, in the Heisenberg’s picture
where the observables evolves in time or in the mixture given by the inter-
action picture.

2.5.1 Schrödinger’s picture

In Schrödinger’s picture the state vectors evolve in time while the operators
remain stationary. The evolution is given by [14, 15]

i~
d

dt
|ψ〉 = Ĥ|ψ〉, (2.11)

where |ψ〉 is the state vector of the system and Ĥ is the Hamiltonian of the
system. The stationary solution of Schrödinger’s equation are given by the
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vectors |En〉, where Ĥ|En〉 = En|En〉. It is possible to expand any state in
the basis of eigenstates of Ĥ. In this case the time evolution of the state
vector takes the form [13]

|ψ(t)〉 =
∑
n

e−iEnt/~cn|En〉. (2.12)

2.5.2 Heisenberg’s picture

In Heisenberg’s picture the operators evolve in time and the state vectors
remain stationary, opposite the Schrödinger picture. The observables de-
scribing different measurements of the system depends explicitly on the time
t in this picture and evolve according to [14, 15]

i~
d

dt
Ô =

[
Ô, Ĥ

]
+ i~

∂Ô

∂t
. (2.13)

2.5.3 The interaction picture

The interaction picture is also referred to as the Dirac picture, which is an
intermediate representation of Schrödinger’s and the Heisenberg’s pictures.
In the interaction picture both the operators and the state vectors carry part
of the time dependence of observables (in opposition to Schrödinger’s and
Heisenberg’s picture where one of them was stationary). In order to switch
to the interaction picture, the Schrödinger picture Hamiltonian is divided
into [15]

ĤS = Ĥ0,S + Ĥ1,s, (2.14)

where the Ĥ0,S often is well understood and exactly solvable, and Ĥ1,S is
a perturbation to the system. Often eventual explicit time dependence is
connected to Ĥ1,S such that Ĥ0,S is time independent.

The state vectors evolve according to [15]

|ΨI(t)〉 = eiĤ0,St/~|ΨS(t)〉, (2.15)

where |ΨS(t)〉 is the state vector in the Schrödinger picture. The operators
evolve according to

ÂI(t) = eiĤ0,St/~ÂS(t)e−iĤ0,St/~ (2.16)
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The Hamiltonian operator in the interaction picture consists as mentioned of
two parts. The first (unperturbed) part Ĥ0,I(t) is equal to the Schrödinger

equivalent Ĥ0,S(t), while the second part equals

Ĥ1,I(t) = eiĤ0,St/~Ĥ1,Se
−iĤ0,St/~. (2.17)

The time evolution of state vectors, operators and the density matrix in the
interaction picture is given by [15]

i~
d

dt
|ψI(t)〉 = Ĥ1,I(t)|ψI(t)〉 (2.18)

i~
d

dt
ÂI(t) =

[
ÂI(t), Ĥ0

]
(2.19)

i~
d

dt
ρI(t) =

[
Ĥ1,I(t), ρI(t)

]
, (2.20)

where ρ is the density matrix, which will be introduced more thoroughly in
chapter 3.

2.6 Quantization of the electromagnetic field

In the start of quantum mechanics the field was left with a classical descrip-
tion, but with Dirac’s ideas from 1927 [16] the a method to describe the
quantum field was developed and this quantization is denoted as the second
quantization. Light is electromagnetic waves propagating through space and
can be treated as small wave packets of energy called photons. These photons
can be treated mathematically as energy eigenstates of a harmonic oscillator
of unit mass. The Hamiltonian for the single mode electric field in the case
of no sources of radiation is [14]

Ĥ =
1

2

(
p̂2 + ω2q̂2

)
, (2.21)

where p̂ is the canonical momentum operator and q̂ is the canonical position
operator. The operators q̂ and p̂ are hermitian operators and hence cor-
respond to observable quantities (position and momentum), but it is often
convenient to combine q̂ and p̂ to define two non-hermitian operators called
the annihilation and creation operators
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â =
1√
2~ω

(ωq̂ + ip̂) (2.22)

â† =
1√
2~ω

(ωq̂ − ip̂) . (2.23)

Introducing these operators, the Hamiltonian from equation (2.21) can be
written as

Ĥ = ~ω
(
â†â+

1

2

)
. (2.24)

The eigenstates of the Hamiltonian are called Fock states and are denoted
|n〉. They have energy En such that

Ĥ|n〉 = En|n〉, (2.25)

where

En = ~ω
(
n+

1

2

)
, n = 0, 1, 2, · · · (2.26)

It follows from equation (2.26) that n is the number of energy quanta (~ω)
contained in the state |n〉, which is equivalent to the number of photons.
It is also seen that vacuum (n = 0) has the zero point energy 1

2
~ω. The

set of all Fock states ({|n〉}) is an orthonormal basis of the Hilbert space of
the Hamiltonian (equation (2.21)). It is furthermore a complete set, which
means that any state of a single mode electromagnetic field can be written
as a superposition of Fock states. When the annihilation/creation operators
â
(
â†
)

acts on a state |n〉 one obtains [14]

â|n〉 =
√
n|n− 1〉 (2.27)

â†|n〉 =
√
n+ 1|n+ 1〉. (2.28)

From this it also follows why the â operator is denoted the annihilation
operator, since the number of photons n is reduced by one and why the â† is
denoted the creation operator, since the number of photons is increased by
one. Another important operator is the number operator n̂ = â†â with the
expectation value [13]

〈n|n̂|n〉 = n. (2.29)

n is hence the average number of photons.
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Chapter 3

Open system Dicke model

This chapter presents initially what ion traps are, how they are constructed
and their purpose in quantum computing along with an introduction to the
formalism used to describe ions throughout this thesis. Secondly open sys-
tems are treated and how they mathematically can be described with the
master equation. Thirdly the standard Dicke model (what is meant by stan-
dard will become clear later) will be presented with focus on why the Dicke
model is interesting to investigate. The last part is a derivation of the Hamil-
tonian for the Dicke model.

3.1 Ion Traps

An ion trap is an electromagnetic device for confining a charged particle in
space. A trapped ion contains two seperable quantum systems: a ladder of
harmonic oscillator motional states and an internal electronic state (as long
the ion is kept undisturbed) [17]. A key feature of the ion trap is that these
external and internal states can interact through laser radiation. This section
describes briefly how ion traps are constructed, their benefits as the basis for
quantum computing and a description of the dynamics in a ion trap.

Ions have a charge and one are hence able to fix its position with electric
fields. Furthermore the internal states are insensitive to electric fields and
the ions are (almost) fixed in their position while the internal states store
information. This section will initially describe key elements for the ion
trap and how it can be used in quantum computing. The last part of this
section introduces a formalism for two-level ions and how they can be treated
mathematically.
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3.1.1 The force on ions in an electric field

Ions respond strongly to applied electric fields due to the Coulomb interaction
[2, 15]. An ion with a single charge e = 1.6 · 10−19 C in an electric field of
105 Vm−1 experiences a force

Fion = eE ≈ 10−14 N, (3.1)

which corresponds to 500 V between eletrodes which are 5 mm apart. In
comparison a neutral atoms with a magnetic moment of one Bohr magneton
in a magnetic field gradient of dB/dz = 10 Tm−1 experiences a force of
magnitude [2].

Fneutral = µB

∣∣∣∣dBdz
∣∣∣∣ ≈ 10−22 N. (3.2)

An ion is hence trapped by a force 108 times greater than magnetically
trapped neutrals. The trap depth of such an ion trap corresponds to the
kinetic energy of temperature of 6 · 106 K compared to a trap depth of 0.07
K of neutral atoms [2] which makes it possible to construct extremely tight
traps. Furthermore one doesn’t need to cool ions as needed for neutral atoms
before one can trap them.

3.1.2 Earnshaw’s theorem

The interaction with electric fields make ions tempting to use, but a charged
particle cannot rest in stable equilibrium in an electric field [2]. This is known
as Earnshaw’s theorem and it is thus not possible to confine an ion only
with electromagnetic fields. This comes from the Laplace equation ∇2Φ =
0, where Φ is the electrostatic potential. A stable trap requires that the
potential energy U has a minimum, i.e. ∇U = 0 and ∇2U > 0, but the
potential energy is propotional to the electrostatic potential U = qΦ and it
is hence impossible to make a trap using electrostatic fields. The solution
is to introduce time varying fields and the two main ion traps to go to are
Penning traps and Paul traps, where this thesis focuses on a Paul trap. The
Paul trap has the disadvantage that it exhibit micromotion which will be
neglected in this thesis [17].

3.1.3 The Paul trap

The Paul trap can be illustrated as a rotating saddle-shaped surface. If
one picture the ion to be positioned on a saddle-point and able to move a

13



small perturbation will force the ion to move down the saddle and the ion
is hence not trapped. If one instead starts to rotate the saddle, the ion
will continuously starts to move down in one direction just to moved in the
opposite direction a quarter rotation of the saddle later and hence stay fixed
around the induced equilibrium. The velocity and hence kinetic energy of
the ion depends on how far away from equilibrium the ion moves [2].

3.1.4 Resolved sideband cooling

Trapped ions have both internal states of the ions and external states of
vibrational modes. It is hence possible for the ions to absorb light at the
angular frequency of the transition of the free ion ω0 and also the frequencies
ωL = ω0 ± nωv, where n is an integer. This corresponds to transition in
which the vibrational motion of the ion changes. The energy of the system is
reduced if one uses a laser with the frequency ωL = ω0−ωv to excite the first
sideband of lower frequency. The vibrational level is hence reduced by one
(the new vibrational level equals v′ = v−1). The sideband cooling continues
until the ion has been driven into its lowest vibrational energy level. It is
possible by measurements of the ratio of the sidebands to estimate in which
level the ion is in [2].

3.1.5 Ion traps and quantum computation

The ion trap was first proposed for quantum computing by Cirac and Zoller
[3]. The internal states of the ions (for instance two hyperfine structure
states) are shielded from the surroundings and can represent an effective two-
level system: |0〉 ↔ |1〉. The Pauli operators are suited for describing this
two-level system, as introduced in section (3.1.6). To implement the gates
between the bits, it was proposed to apply laser fields to the trapped ions.
Due to the recoil of an ion upon absorption of a photon both the internal and
motional states of the ions are coupled and one can implement gates between
the ions [17]. This thesis initially investigate a system where the number of
ions goes to infinity N →∞ and the Hamiltonian of the system is presented
in section (3.4), but will not go further into how ion traps can be used to
quantum computation.

3.1.6 Formalism: Ions

Initially a system of a single two-level ion with states |g〉 and |e〉 is investi-
gated. The ion part is conveniently described by the operators [13]
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σ̂z =
1

2
(|e〉〈e| − |g〉〈g|) , σ̂+ = |e〉〈g|, σ̂− = |g〉〈e| (3.3)

σ̂x =
1

2
(σ̂+ + σ̂−) , σ̂y =

i

2
(σ̂− − σ̂+) , (3.4)

where the physical interpretation of the operators is that σ̂z is the population
difference between excited and ground state and the σ̂± are the raise and
decrease operators between the ground and excited state. These operators
satisfy the spin-1/2 algebra of Pauli matrices, i.e.,

[σ̂−,m, σ̂+,n] = −2σ̂z,mδm,n (3.5)

[σ̂−,m, σ̂z,n] = σ̂−,mδm,n (3.6)

[σ̂i,m, σ̂j,n] =
∑
k

iεijkσ̂k,mδm,n. (3.7)

It is also possible to investigate the entire system using the collective angular
momentum operators Ĵi, i ∈ {x, y, z,±}, defined as Ĵi =

∑
m

σ̂i,m [18]. These

operators do also satisfy the spin-1/2 algebra of Pauli matrices, i.e.[
Ĵi, Ĵj

]
=
∑
m,n

[σ̂i,m, σ̂j,n] =
∑
m,n

∑
k

iεijkσ̂k,mδm,n =
∑
k

iεijkĴk. (3.8)

Ĵz is an eigenfunction of the product state |Ψ〉 = |s1,m1〉|s2,m2〉 · · · |sN ,mN〉
with eigenvalues mn:

Ĵz|Ψ〉 =

[∑
n

mn

]
|Ψ〉. (3.9)

The toal spin of the system is assumed to be as large as possible J ≡
N∑
n=1

sn =

N
2

, since all the ions ca be described as a spin-1/2-system. The eigenvalues

of the nth ion are given by Sn,±|s,mn〉 =
√

(s∓mn)(s+ 1±mn)|s,mn ± 1〉
[13].

3.2 Open systems

It is possible to investigate complicated systems more efficiently if one trun-
cates the description to include only the few modes or atomic levels of inter-
est. Our system is not isolated and will hence ”speak” with the ”environ-
ment” or the ”reservoir” over which we have no control. In many cases one
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wants to develop a formalism where the reservoir could be neglected by elim-
inating for instance radiation field degrees of freedom while the evolution of
the system itself still can be described. This section describes mathematical
methods to do so.

3.2.1 The density operator

In the previous sections the quantum mechanical system has been represented
by the state vector |ψ〉 in the Hilbert space. The state vector cannot treat
macroscopic objects, it is neither always useful to use this representation.
The quantum mechanical system (and classical ensembles as well) can be
expressed by the density operator ρ̂ given by [14]

ρ̂ =
∑
n

pn|ψn〉〈ψn|. (3.10)

If there exists a basis in which ρ̂ = |φ〉〈φ| for some state |φ〉, the system is
said to be in a ”pure” state and likewise if no such basis exists the system
is said to be in a ”mixed” state. The density operator has several important
properties which applies to all density operators. It must first of all be
hermitian ρ̂ = ρ̂†. Secondly its trace over the orthonormal basis {|n〉} must
equals one Tr[ρ̂] =

∑
n

〈n|ρ̂|n〉 = 1. Thirdly for pure states the following

must be satisfied 〈n|ρ̂2|m〉 ≤ 〈n|ρ̂|m〉, where |n,m〉 are any pure state. Note
that the first two follows directly from the probability interpretation and
conservation of probality [15].

Expectation values can be calculated directly from the density operator.
From equation (cite to equation 〈Ô〉 = 〈ψ|Ô|ψ〉 in fundamentals) it follows
that

〈Ô〉 =
∑
α

pα〈ψα|Ô|ψα〉 (3.11)

=
∑
α,n

pα〈ψα|Ô|n〉〈n|ψα〉 (3.12)

=
∑
n

〈n|

(∑
α

pα|ψα〉〈ψα|

)
︸ ︷︷ ︸

ρ̂

Ô|n〉 (3.13)

= Tr[ρ̂Ô] (3.14)

The density matrix can also be written such that [15]
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ρ̂ =
∑
n,n′

|n〉 〈n|ρ̂|n′〉︸ ︷︷ ︸
ρn,n′

〈n′| (3.15)

where the physical interpretation of the density operator is clear. The diago-
nal elements ρnn = 〈(|n〉〈n|)〉 correspond to the probability of occupying state
|n〉 and off-diagonal elements ρnm = 〈(|n〉〈m|)〉, where n 6= m correspond to
the expectation value of the coherence between level |n〉 and |m〉.

3.2.2 System and environment

A physical system will often be linked to an environment and one can treat
the system and environment as two subsystem of the entire system. The
density operator formalism is suited for describing the case where you only
care about obe of the systems. The entire system given by the state vector
|ψ〉 with corresponding density operator ρ̂ = |ψ〉〈ψ|. The entire system can
be expressed in terms of its two subparts {|e〉, |s〉}, where |e〉 is the state of
the environment and |s〉 is the state of the system, so that

|ψ〉 =
∑
n,e

|s〉|e〉〈s, e|ψ〉. (3.16)

If the expectation value of an operator Ŝ which acts only on the system
degree of freedom,

〈Ŝ〉 =
∑
s,e

〈s, e|Ŝ|ψ〉〈ψ|s, e〉 (3.17)

=
∑
s

〈s|Ŝ (
∑
e

〈e|ψ〉〈ψ|e〉)︸ ︷︷ ︸
ρ̂S

|s〉 (3.18)

= TrS[Ŝρ̂S]. (3.19)

If one seeks an expectation value of a system operator, it can be found in
terms of the reduced density operator

ρ̂S = TrR [ρ̂] . (3.20)

If ρ̂S describes an open system ρ̂S =
∑
α

pα|ψSα〉〈ψSα | is a mixed state. If it is

a pure state then the system is not open.
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3.2.3 The dynamics of an open system

The reduced density matrix ρ̂S evolves in time. If the Hamiltonian only acts
on the system, the reduced density matrix evolves according to

i~ ˙̂ρS =
∑
α

pα

(
i~ ˙|ψ〉〈ψ|+ |ψ〉i~ ˙〈ψ|

)
(3.21)

=
1

i~

[
ĤS, ρ̂S

]
. (3.22)

If one includes interacting terms in the Hamiltonian ĤSR the dynamics will
be more complicated.

General formalism

The total Hamiltonian consists of three elements, one for the system ĤS,
one for the environment ĤR and one for the interaction between system and
environment ĤSR

Ĥ = ĤS + ĤR + ĤSR. (3.23)

The total density matrix obeys

˙̂ρ =
1

i~

[
Ĥ, ρ̂

]
(3.24)

=
1

i~

[
ĤS + ĤR + ĤSR, ρ̂

]
. (3.25)

If one trace over the reservoir degree of freedom on both sides of the equation
one observes that the first term (ĤS) gives us equation (3.22), as if there has
not been a reservoir, the trace over the reservoir gives zero due to invariance
under cyclic permutations and the interaction needed to be treated for the
system in question. For a Markovian reservoir (the system and reservoir
is factorizable in short time limits and the system is not affected by the
knowledge of earlier observations) [19] it is possible in the Schrödinger picture
to obtain the master equation [15]
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∆ρ̂S
∆t

=−
∑
k

γk
2
n̄
(
ĉkĉ
†
kρ̂c − ĉ

†
kρ̂S ĉk

)
+HC (3.26)

−
∑
k

γk
2

(n̄+ 1)
(
ĉ†kĉkρ̂S − ĉkρ̂S ĉ

†
k

)
+HC (3.27)

+
1

i~

[
ĤS, ρ̂S

]
, (3.28)

where γk is the decay rate to the k’th mode, n̄ is the average number of ions
(see equation (2.27)) ĉk is a general system operator and ρ̂S is the density
matrix of the system.

3.3 The Dicke model

The standard Dicke model is composed of N ions cooperatively interacting
with a single radiation field. The term cooperatively has to be understood
in the way that atomic dipoles interact coherently with the privileged (or
single) radiation mode [20]. The Dicke model has had renewed interest due
to its quantum phase transitions and the multi-partite entanglement from a
simple system, where this thesis focusses on the first part.

In order to have N atoms (or ions) to interact solely with one privileged
mode of the radiation field a special environment is required, namely that
one mode or frequency must dominate while other frequencies are suppressed.
The basic Hamiltonian for the Dicke model is given by [8]

Ĥ = ωâ†â+ ω0Jz +
V√
J
x̂Jx (3.29)

where ~ = 1. The operators â† and â are the usual creation and annihila-
tion operators for the quantized field, and the collectively atomic operators
involved Jx and Jz are defined in section (3.1.6).

It is seen from equation (3.29) that two terms compete, namely ω0Jz and
V/
√
J · x̂Jx. If V = 0 and the system starts in Jz = −N/2 nothing will

change this, but if one cranks up V the two terms will compete until the
interesting continuous quantum phase transition occur where the state is
changed from having Jz to Jx as the dominant term. An example of this is
seen in figure (3.1), but this will more thouroughly be presented in chapter
(4).
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Figure 3.1: A phase transition occurs γ =
√

(2V 2ω0 − ωω2
0)/ω ≈ 0.077. This

figure has been produced with the following parameters: ε = 0.0, V = 0.2, ω =
0.5, ω0 = 0.1,Ω = 0.0.

Consistent with for instance [20] a phase transition takes place for γ, when
γ =

√
(2V 2ω0 − ωω2

0)/ω is found for this model. With the parameters given
in the figure text to figure (3.1) the phase transition occur at γ ≈ 0.077.
The boundary for phase transitions in this model will be presented in section
(4.1.3).

3.4 Derivation of Hamiltonian

The system under investigation throughout this thesis is an ion-laser system.
This system constituate of three seperate parts: A part describing the ions
with the Hamiltonian Ĥions, an electromagnetic part describing the quan-
tized electromagnetic field with the Hamiltonian Ĥfield and the interaction
between ions and field Ĥinteraction. This chapter presents the derivation of the
Hamiltonian for the extended Dicke model.

Formally the Hamiltonian can be split into the following parts which will be
described in the following

Ĥ = Ĥions + Ĥfield + Ĥinteraction. (3.30)
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3.4.1 The non-interacting terms

It follows from section (2.6) that the Hamiltonian for the quantized field is
given in units of ~ = 1 by

Ĥfield =
N∑
k

ωk

(
â†â+

1

2

)
(3.31)

or in the case of a single privileged mode with the neglection of zero-point
energy

Ĥfield = ωâ†â (3.32)

and given the operators presented in section (3.1.6), the Hamiltonian for a
single ion can be written as

Ĥion = Eg|g〉〈g|+ Ee|e〉〈e| ≡
ω0

2
σ̂z, (3.33)

where the energy of the ground state is given by Eg ≡ −ω0

2
and the energy

of the excited state is given by Ee ≡ ω0

2
, so the zero-energy point is chosen

to be directly between the ground and excited state. The energy scheme of
the two-level system is illustrated in figure (3.2).

|g〉

E = 0

|e〉

ω0

Figure 3.2: The two-level system under investigation.

In this thesis the ions are assumed to be non-interacting and a Hamil-
tonian for several ions is simply found by taking the sum over the N ions
in the system. The non-interacting term in the Hamiltonian for the ions is
hence given by

Ĥions =
ω0

2

N∑
j

σ̂z,j =
ω0

2
Ĵz. (3.34)

where the last term origins from the fact that we can use collective angular
momentum operators to describe the system.
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3.4.2 Ion-Light Interaction Term

The last term, Ĥint, is the ion-light interaction term, which describes the
interaction between the ions and the electromagnetic field, where the electro-
magnetic field is assumed to be uniform across the extension of the point-like
atom and the interaction hence can be described by the dipole moment [2].

Dipole moment

An electron with charge −e at a relative position r̂ creates an electric dipole
moment d̂ = −e · r̂ that couple to the electromagnetic field Ê at the position
of the atom r. Formally, the Hamiltonian describing the process is given by
[14]

Ĥint = d̂ · Ê. (3.35)

Rewriting this in terms of σ̂±-operators one yields [14]

d̂ = −e · r̂ = −
∑

i,j∈{e,g}

e|i〉〈i|r̂|j〉〈j| =
Di,j≡e·〈i|r̂|j〉

−
∑

i,j∈{e,g}

Di,j|i〉〈j| (3.36)

= −De,gσ̂−Dg,eσ̂− = −
(
D+σ̂+ +D−σ̂−

)
, (3.37)

where the electric dipole moment transition matrix elementsDi,j(i, j ∈ {e, g})
was introduced.

Considered system

In the system under investigation, two lasers will drive the |g〉 ↔ |e〉-transition
detuned with the frequency±ω from the resonance frequency ω0, ωL = ω0±ω.
Another small detuning of the lasers χ is added in order to make sideband
cooling of the system. The sideband cooling origin in the fact that the ω2

frequency is closer to resonance than ω1, see figure (3.3) for the system under
consideration.

The laser fields are characterized by

E1 =
E0

2
exp

(
−ik̄1 ˆ̄r

)
exp (i(ω1t+ φ1)) + C.C. (3.38)

E2 =
E0

2
exp

(
−ik̄2 ˆ̄r

)
exp (i(ω2t+ φ2)) + C.C., (3.39)
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|g〉

ω0 − ω − χ

χ

ω0 + ω − χ

|e〉

ω0
ω1

ω2

Figure 3.3: The two-level system under investigation.

where E0 is the amplitude of the field, C.C. is the complex conjugate, k̄ is
the wave vector and φ the phase of each field. ˆ̄r is the position of the ion,
which oscillates around an equilibrium position r0 with the small displace-
ment δ ˆ̄r. The equilibrium term only contributes with a phase factor φr, but
the displacement δ ˆ̄r (assumed to be in the x-direction) can in the formalism
of annihilation and creation operators [14] be given as

k̄δx̂ =
N∑
l

kl

√
1

2mωl

(
â+ â†

)
=

N∑
l

ηl
(
â+ â†

)
, (3.40)

where ηl = kl
√

1/2mωl is the Lamb-Dicke parameter. It is from here on
assumed that there exists one privileged radiation mode and all other modes

are neglected (η =
N∑
l

k
√

1/2mωl ≈ k
√

1/2mω). The Lamb-Dicke parameter

is a measure of the ratio between the recoil energy of the ion due to photon
emission and the energy seperation of the motional states (η =

√
Erec/ω0)

and it can be interpreted as a measure of the ability of excitation and emission
events to change the motional state of the ion. If one assumes the two lasers
have the same phase, the total phase can be given as Φ = φ+ r0. If one adds
the pieces from equations (3.37, 3.40) one obtains the Hamiltonian given by

ĤI =

[
D−1

E0

2
eiω1te−iη1(â+â†)eiΦ1 +D−2

E0

2
eiω2te−iη2(â+â†)eiΦ2

]
|g〉〈e|+H.C.,

(3.41)

where H.C. is the hermitian conjugate. If one make the substitution Ωi =
Di E0

2
, where Ωi is the Rabi frequency of the i’th laser and omits the phase
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into the σ̂−-term and go into the interaction picture with respect to laser i,
one obtains

ĤI = σ̂−

[
Ω1e

iω1te−iη1(â+â†) + Ω2e
iω2te−iη2(â+â†)

]
+H.C. (3.42)

The Lamb-Dicke Regime

The Lamb-Dicke regime is defined as the limit where the spread of the mo-
tional wave function is much less than the wavelength of the light (〈n|r2|n〉 �
1/k) which is satisfied when η

√
2n+ 1 � 1. The interaction Hamiltonian

can in this limit be written as [21]

ĤLD = Ω1σ̂−
(
1 + iη

(
â†eiω1t + âe−iω1t

))
eiφ +H.C. (3.43)

+ Ω2σ̂−
(
1 + iη

(
â†eiω2t + âe−iω2t

))
eiφ +H.C. (3.44)

For sufficiently small strength of the laser (Ω� ωi) and the Rabi frequencies
Ω1 = Ω/2 and Ω2 = Ω1 + εΩ1 = (1 + 2ε)Ω/2 tuned to the red and blue
sideband respectively, the expression can be simplified to

ĤLD =
V

2
√
N

(
σ̂−(1 + ε)â† − σ̂+(1 + ε)â

)
, (3.45)

where V = ηΩ
√
N .

3.4.3 Summary

If one adds the terms from the above given derivation one obtains the Hamil-
tonian:

Ĥ =
ω0

2

N∑
j=1

σ̂z,j + ωâ†â+
V

2
√
N

N∑
j=1

[
σ̂+,j

(
(1 + ε)â+ â†

)
+ σ̂−,j

(
(1 + ε)â† + â

)]
,

(3.46)

which will be used in the following chapters.
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Chapter 4

Standard Dicke Model

This chapter focusses on phases and phase transitions in the standard Dicke
model. Initially the mean field equations of motion will be deduced and
different approaches to solve these equations will be presented. This will
be followed by a section with phase diagrams which also illustrates some of
the differences between the different phases and what happens at the phase
boundary. The final part of this hapter will describe the fluctuations of the
system and analyze the stability of the solutions found by the mean field
approach.

4.1 Equations of motion for the mean field

In physics and probability theory, mean field theory is a way to treat large and
complex models by studying a simpler model. Instead of treating with the
complex many-particle model the system is simplified to a one-body model
without interacting particles. It is possible to see the mean field approach as
the zeroth order expansion of the Hamiltonian in fluctuations. If one seeks
further information on the system fluctuations can be added as a perturba-
tion to the mean field description [19].

The time evolution of the system can be described by the master equation
approach (see equation (3.26)) and the time evolution of the expectation
value of the collective angular momentum operators is hence given by
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d

dt
〈Jx〉 =

d

dt
Tr (Jxρ̂(t)) (4.1)

= Tr

(
Jx
∂ρ̂

∂t

)
(4.2)

= Tr

(
−iJx

[
Ĥ, ρ̂

]
− Jx

2

∑
k

ĉ†kĉkρ̂+ ρ̂ĉ†kĉk − 2ĉ†kρ̂ĉk

)
(4.3)

= Tr

(
i
[
Ĥ, Jx

]
− 1

2

∑
k

Jxĉ
†
kĉk + ĉ†kĉkJx − 2ĉkJxĉ

†
k

)
(4.4)

As long as one only investigates the expectation values one can neglect the
noise operators and the time evolution of expectation value of the operators
are hence given by:

d ˆ〈x〉
dt

= i〈
[
Ĥ, x̂

]
〉+ 〈L(x̂)〉, (4.5)

where ~ = 1, x̂ is the observable under study, the Hamiltonian, Ĥ, is given
in equation (3.46) and the Liouvillian operator L(x̂) can be expressed in the
Heisenberg picture in which case it takes the form

L(x̂) = −
∑
k

γk
2

(
ĉ†kĉkx̂+ x̂ĉ†kĉk − 2ĉkx̂ĉ

†
k

)
(4.6)

If one uses the collective angular momentum operators Ji, A introduced in
section (3.1.6) and investigates how they develop in time one can use the
above approach. With ĉk = σ̂− and γk = γ one obtains the following for
the operator Jx, where all terms of 〈XY 〉 is factorized to 〈X〉〈Y 〉, where
X, Y = Ji, A for i = x, y, z:

J̇x = 〈
N∑
j=1

σ̇x,j〉 =i〈

[
H,

N∑
j=1

σ̂x,j

]
〉

+ 〈
N∑
j=1

γ

2
[2σ̂+,jσ̂x,jσ̂−,j − σ̂+,jσ̂−,jσ̂x,j − σ̂x,jσ̂+,jσ̂−,j]〉

(4.7)

=− ω0

2
Jy +

iV ε

2
√
N
Jz (A− A∗)− γ

2
Jx (4.8)
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and analogously for Jy, Jz and A (the derivation can be found in appendix
(A)):

Ȧ = − iV

2
√
N

((2 + ε)Jx − iεJy)− iωA (4.9)

J̇x = −ω0

2
Jy +

iV ε

2
√
N
Jz (A− A∗)− γ

2
Jx (4.10)

J̇y =
ω0

2
Jx −

V

2
√
N
Jz (2 + ε) (A+ A∗)− γ

2
Jy (4.11)

J̇z =
V

2
√
N
Jy (2 + ε) (A+ A∗)− iV ε

2
√
N
Jx (A− A∗)− γ

(
Jz +

N

2

)
(4.12)

4.1.1 Steady state solutions

This thesis solves steady state solutions of the above given equations in dif-
ferent ways. One of them is for ε = 0 with the symbolic solve function in
matlab and for ε 6= 0 with the numerical fsolve function in matlab. The other
is by iteration with matlab’s ode45 program. The steady state solutions can
mathematically be expressed as

J̇i = 0, where i = {x, y, z} and (4.13)

Ȧ = 0. (4.14)

It is advantageous to investigate the steady state solution of a physical exper-
iment which has to be realized experimentally because the experimentalists
then don’t have to be careful about the timing of their observations. As long
as the system is in its steady state it doesn’t change and the observer get the
same result independent of the time of the measurement. This analysis will
hence look into these steady state solutions and describe the behaviour of the
system by steady state solutions of the mean field equations given above. For
a given state there might be several solutions and different initial conditions
will change the state the system ends up in. In later section these differences
will be described along with whether all (or none) of these solutions are stable.

The previous mentioned solve approach finds all the steady state solutions
for given parameters. The fsolve approach finds one solution given a set
of initial conditions. The ode45 program iterates the time evolution of the
coupled differential equation given a set of initial conditions as the fsolve ap-
proach. In figure (4.1(a)+4.1(b)) examples of the time evolution simulated
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by ode45 is shown, where the system ends in the steady state for the super-
radiant and normal phase. The value of the collective angular momentum
operators are then saved as a function of the parameters. In later sections
phase diagrams will be shown where each point is found by this procedure.

(a) (b)

(c)

Figure 4.1: Parameters: ε = 0.0, ω = 0.5, ω0 = 0.1,Ω = 0.0, γ = 0.1. Left:
Superradiant phase (V = 0.48). Right: Normal phase (V = 0.16). It is also seen
that for the normal phase is close to the phase transition and hence takes longer
to dampen. The one below is with Jz = −0.5 as initial condition.

The four equations of motion (equation (4.9-4.12)) contain three different
mean field descriptions of the collective angular momentum operators (Jx, Jy
and Jz) and the mean field description of the oscillator operator A. It is
possible to reduce these equations to one equation and eliminate three of the
variables. It is here chosen to reduce the four equations to one equation with
respect to Jz. In appendix (B) it is possible to see the elimination of the
other variables and the result is given in equation (4.15).

28



0 =−
(
Jz +

1

2

)[
2γδ2J4

z + 4βδγJ3
z + 2γα2

]
−
(
Jz +

1

2

)[
4γαβJz + 4γαδJ2

z + 2γβ2J2
z

] (4.15)

where

α = ω
[
ω2

0 + γ2
]
, β = V 2ω0

[
ε2 + (2 + ε)2

]
/N, δ = (2 + ε)2V 4ε2/ωN2

(4.16)

It follows that Jz = −N/2 and (see appendix (B)) A = Jx = Jy = 0 is a
solution and we are left with a fourth order polynomial for the other eventual
solutions. Each solution here corresponds to a phase and the case where all
ions points down in the Jz direction is hence one phase.

4.1.2 Jz-polynomials

Equation (4.15) is a polynomial with respect to Jz where the null points indi-
cates a phase. The number of null points are hence the number of phases for
the specific setting of parameters. For the different phases a different number
of solutions occur as seen in later sections. A way to visualize how these new
phases occur is by plotting the Jz-polynomial for different parameter values.
In figure (4.2) three lines are shown each with the same parameters except
they have different values of V ’s. The red line only crosses zero once and
have hence only one phase, where the green and magenta have the same value
of Jz for one of their phases, but comes up and ”touches” the x-axis. This
point is analogous to case where the discrimant in the quadratic equation
equals zero and is hence a double-degenerate solution. This will be further
analyzed in section (4.2.4). A way to remove this degeneracy is to include
a small Ωσ̂x, see the inset in figure (4.3). Here it is also seen that the value
of Jz around −N/2 no longer is the same for the different lines. In order for
the difference to be substantial a quite large Ω is required (here one tenth of
the energy differences of the levels in the ion (ω0). The introduction of this
term will be discussed in chapter (5).

The time evolution shown in figures (4.1(a)+4.1(b)) shows how the system
ends with Jz-values that corresponds to the one given below. In the normal
phase the value is the same as the Jz-value where the red line crosses zero.
In the superradiant phase it has the Jz-value of the second null point (this is
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the stable solutions, which will be discussed more thouroghly later). IN FIG-
URE (4.1(c)) it is shown how the system stay in Jz = −N/2 if it starts there
even though it is not a stable solution, both for V/

√
J = 0.16, V/

√
J = 0.48.

Figure 4.2: Parameters: γ = 0.1, ε = 0.0, ω = 0.5, ω0 = 0.1,Ω = 0.0. Cyan circle
is solutions from fsolve and blue crosses solutions from solve.

Figure 4.3: Parameters: γ = 0.1, ε = 0.0, ω = 0.5, ω0 = 0.1,Ω = 0.01. Blue crosses
solutions from solve. It didn’t help with ε 6= 0 and fsolve.
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4.1.3 Phase boundary

In this section an analytical expression for the position of the phase transition
is given, both with and without the sideband cooling parameter ε. The
equations of motion given in equation (4.9-4.12) can for Jy 6= 0 through
elimination be written as:

0 = ω2
0 + γ2 +

(
V 2
(
ε2 + (2 + ε)2)ω0

Nω

)
Jz +

(
V 4ε2(2 + ε)2

N2ω2

)
J2
z (4.17)

from which it follows

Jz =−
(
NV 2

(
ε2 + (2 + ε)2)ω0ω

)
2V 4ε2(2 + ε)2

±

√(
NV 2

(
ε2 + (2 + ε)2)ω0ω

)2 − 4(ω2
0 + γ2) (N2V 4ε2(2 + ε)2ω2)

2V 4ε2(2 + ε)2

(4.18)

and for Jy = 0, the Jz-value must be Jz = −N/2, which give a phase transi-
tion when

N

2
=

(
NV 2

(
ε2 + (2 + ε)2)ω0ω

)
2V 4ε2(2 + ε)2

±

√(
NV 2

(
ε2 + (2 + ε)2)ω0ω

)2 − 4(ω2
0 + γ2) (N2V 4ε2(2 + ε)2ω2)

2V 4ε2(2 + ε)2

(4.19)

or for γ:

γ =

√
2V 2(ε2 + (2 + ε)2ωω0)− V 4ε2(2 + ε)2 − 4ω2

0ω
2

4ω2
(4.20)

which goes into equation (4.21) when ε = 0. The ε parameter slightly change
the position of the phase transition for small ε, but otherwise doesn’t change
the conditions for the phase boundary.

γ =

√
2V 2ω0 − ωω2

0

ω
. (4.21)
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In the case with ε = 0 there is only a phase transition for values of V above
a critical V given by:

V ≥ Vcritical =

√
ωω0

2
, (4.22)

which is consistent with for instance [23, 24]. If one includes ε the expression
gets a bit more cumbersome, but it is possible to show that V has to be in
the interval

√
2ωω0

(2 + ε)2
≤ V ≤

√
2ωω0

ε2
, (4.23)

where the lower limit is the same as in equation (4.22) for ε = 0.

4.2 Phase diagrams

The first phase diagram contains a second order phase transition, see figure
(4.4). It contains a normal phase (the blue part), where the only nonzero
term of the collective angular momentum operators is Jz = −0.5 and a
superradiant phase (in the bottom right corner). The phase diagram has
been made by iteration of the time evolution with matlab’s ode45 program
and where each point in the phase diagram is taken as the last value of Jz
from the iteration. An example of how the collective angular momentum
operators A, Ji where i ∈ {x, y, z} develops according the ode45 is shown in
figure (4.1(a)).

32



Figure 4.4: This figure shows a second order phase transition with a normal phase
(blue) and a superradiant phase (bottom right corner). Parameters used: ε =
0.0, ω = 0.5, ω0 = 0.1,Ω = 0.0.

The green dashed line corresponds to the analytical solution of where the
phase boundary is, given by equation (4.21) and there is no phase transition
for values of V less than Vcritical =

√
ωω0/2 as expected by equation (4.22).

The approach is hence consistent with the analytical solution. It is also seen
in figure (4.4) that it is possible to see a second order phase transition, both
if one increase the laser coupling parameter V or the dissipation γ.

Concistency between ode45 and fsolve

If one goes to larger V ’s a new phenomena is observed. It is shown in figures
(4.5+4.6). The figures have been produced with the matlab programs ode45
and fsolve respectively, where in the last case the value of Jz was set to zero
if no stable solutions were found (what is meant with stable solutions will
become clear in section (4.3)). There is observed a consistency between the
numerical solution of the steady state equations for the equations of motion
and the time evolution from ode45. The phase transition is furthermore
found to be consistent with equation (4.21) indiciated by the blue (green)
dashed line.

The region with many different colors in the ode45 plot and dark red in
the fsolve plot is a chaotic phase where there is no stable solutions and this
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chaotic behaviour will be left for chapter (6). The phases differs by (a)
the time evolution of the collective angular momentum operator (see section
(4.2.3)), (b) broken symmetry (see section (4.2.4)) and (c) number of stable
solutions (see section (4.3.4)).

Figure 4.5: Parameters: ε = 0.0, ω = 0.5, ω0 = 0.1,Ω = 0.0. Red: analytical
solution without ε. Blue with ε. Both without Ω. ode45

Figure 4.6: Parameters: ε = 0.0, ω = 0.5, ω0 = 0.1,Ω = 0.0. fsolve where Jz = 0 if
no stable solutions (stability will be discussed more thoroughly later).
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4.2.1 ε changes the phase diagram for larger V ’s

If one includes the sideband cooling parameter ε the phase diagram changes.
The idea behind the inclusion is to reduce the flucutations, which will be
shown in section (4.3.3). In section (4.1.3) expressions for γ(V ) was shown
(see equations (4.20+4.21)). Beside this expression for the phase boundary
also critical values of V was shown, see equations (4.22+4.23).

It is seen in figures (4.7+4.8) that for V < 2 the inclusion of ε only changes
the phase boundary slightly, whereas for larger V ’s it becomes crucial. For
values of V larger than

√
2ωω0/ε2 only the normal phase exist when ε 6= 0

as in the case for V ≤
√

2ωω0/(2 + ε)2 as expected by equation (4.23). A
new region is also seen in figure (4.7) for larger values of V in the case ε = 0.
This region will be treated in section (??).

Figure 4.7: Parameters: ε = 0.0, ω = 0.5, ω0 = 0.1,Ω = 0.0. Red: analytical
solution without ε. Blue with ε. Both without Ω. .. the upper bound for V is
observed consistent with equation (4.23)
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Figure 4.8: Parameters: ε = 0.05, ω = 0.5, ω0 = 0.1,Ω = 0.0. Red: analytical
solution without ε. Blue with ε. Both without Ω. .. the upper bound for V is
observed consistent with equation (4.23)

Figure 4.9: Parameters: ε = 0.05, ω = 0.5, ω0 = 0.1,Ω = 0.0. Red: analytical
solution without ε. Blue with ε. Both without Ω. .. the upper bound for V is
observed consistent with equation (4.23)
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Figure 4.10: Parameters: ε = 0.0, ω = 0.5, ω0 = 0.1,Ω = 0.0, γ = 0.5, V = 7.0.
This figure shows the time evolution in one of the points in the new phase. It is
not stable and keeps oscillating also for larger time scales.

Figure 4.11: Parameters: ε = 0.0, ω = 0.5, ω0 = 0.1,Ω = 0.0, γ = 0.5. The largest
real part of the eigenvalues of the fluctuations.
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Figure 4.12: Parameters: ε = 0.0, ω = 0.5, ω0 = 0.1,Ω = 0.0, γ = 0.5. The largest
real part of the eigenvalues of the fluctuations.

4.2.2 The phase diagram is time independent

In section (4.1.1) steady state solutions were explained and assume the system
to end in a steady state. In the normal and superradiant phase it is also seen
that the systems develops according the ode45 into a stable state which is
equal to the solution of the steady state equations. It is not clear whether
this is also the case for the chaotic phase, where no stable solutions occur
and according to the Jz(t)-graphs the values changes for each new iteration.
Figures (4.14+4.13) show that this behaviour is constant in time and that it
hence not simply is a question of too short a timescale. So where the values
of Jz depends on the time in the chaotic phase the overall phase diagram is
the same.
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Figure 4.13: Parameters: ε = 0.05, ω = 0.5, ω0 = 0.1,Ω = 0.0. Red: analytical
solution without ε. Blue with ε. Both without Ω. Number of iterations (ode45):
5,000.

Figure 4.14: Parameters: ε = 0.05, ω = 0.5, ω0 = 0.1,Ω = 0.0. Red: analytical
solution without ε. Blue with ε. Both without Ω. Number of iterations (ode45):
10,000.

Figure 4.15: Parameters: ε = 0.05, ω = 0.5, ω0 = 0.1,Ω = 0.0. Red: analytical
solution without ε. Blue with ε. Both without Ω. Number of iterations (ode45):
20,000.
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4.2.3 Jz(t)-graphs

In figures (4.16-4.19) the time evolution of A and Ji is shown in the normal
phase (figure 4.16), the super-radiant phase (figure 4.17) and the chaotic
phase (figures 4.18+4.19), where the second is a zoom of the last 1000 it-
erations from the first figure. It is clear that the Jz-values in the normal
phase and superradiant phase origin from a steady state solution, but there
is no steady state solution in the chaotic regime and the value taken depends
hence on where one chooses to stop the iteration.

Figure 4.16: Parameters: ε = 0.0, ω = 0.5, ω0 = 0.1,Ω = 0.0, γ = 1.0, V = 0.5.
Normal phase
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Figure 4.17: Parameters: ε = 0.0, ω = 0.5, ω0 = 0.1,Ω = 0.0, γ = 0.1, V = 0.5.
Superradiant phase

Figure 4.18: Parameters: ε = 0.0, ω = 0.5, ω0 = 0.1,Ω = 0.0, γ = 0.1, V = 1.5.
Chaotic phase
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Figure 4.19: Parameters: ε = 0.0, ω = 0.5, ω0 = 0.1,Ω = 0.0, γ = 0.1, V = 1.5.
Chaotic phase (zoom)

Figure 4.20: Parameters: ε = 0.0, ω = 0.5, ω0 = 0.1,Ω = 0.0, γ = 0.1, V = 1.0.
Boundary between chaotic and superradiant phase. At the phase boundary it takes
forever for the system to be damped. All this figures with Jz(t) could be refered to
in the phase diagram with a cross on the relevant points.

4.2.4 Broken symmetry

As seen in section (4.1.2) there exists a double degenerate solution in the
superradiant and chaotic phase. If one plots the values of A, Jx or Jy instead
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it is observed that the transition from the normal phase to the superradiant
phase breaks their symmetry and where there in the normal phase is one
solution there is now three solutions. Which one the system ends up in
depends on the initial conditions, i.e. whether the system starts in Jx, Jy or
Jz state. In figures (4.21-4.23) the values of Jx is plotted. The background
colors illustrates the different phases and it is also seen from the figures that
this way to express the states shows no difference between the chaotic and
superradiant phase. The difference between these states will was partly seen
in section (4.2.3) with the time evolution of the collective angular momentum
operatos in the different phases and will also be seen in section (4.3.4) with
the number of stable solutions.

Figure 4.21: The parameters used to produce this figure are: ε = 0.0, ω = 0.5, ω0 =
0.1,Ω = 0.0, V = 0.6. It shows how the broken symmetry of the superradiant phase
transition breaks at the phase boundary when one cranks up the dissipation.
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Figure 4.22: The parameters used to produce this figure are: ε = 0.0, ω = 0.5, ω0 =
0.1,Ω = 0.0, V = 1.5. It is seen that the phase transition between the normal phase
and the superradiant phase breaks the symmetry (also seen in figure (4.21)), but
nothing happens when one goes from the superradiant to the chaotic phase.

Figure 4.23: The parameters used to produce this figure are: ε = 0.0, ω = 0.5, ω0 =
0.1,Ω = 0.0, γ = 0.2. This figure shows the same behaviour as figure (4.22) when
one scan over V instead of γ.
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4.3 Fluctuations and stability of the system

So far only the mean field evolution of the system has been investigated. It
has been shown that there exist different phases and in some of these phases
several solutions exists. This section will develop a tool which enables one
to check the stability of the found solutions and it gives hence a way to
characterize the different phases. This section will only include the first
order in the expansion of the mean field and a linearization of the noise is
hence made.

If a system is in an unstable state, just the smallest perturbations will drag
the system away from this state. If the system is stable a small perturbation
will not leave the state altered; after a short time it will be back in its
equilibrium position given by the mean field equations in this case. Examples
of an unstable point in two dimension are a saddlepoint and a knot, where
a small pertubation along one (two) axes will take the system away from its
equilibrium position.

4.3.1 Linearization of the fluctuations

An operator can be written as an expectation value and its fluctuations
around it, where one can truncate the larger order of the fluctuations.

Ô = O + δÔ +O((δO)2), (4.24)

where Ô is the operator, O the expectation value and δÔ is the fluctuations.
If one take the time derivative of this equation one obtains

dÔ

dt
=
dO

dt
+
dδt

dt
(4.25)

which enables one to get an equation of the time derivative of the fluctuations

dδO

dt
=
dÔ

dt
− dO

dt
. (4.26)

In the following the noise operators δÂ and δĴi will be deduced.

Example: δÂ, δÂ∗-terms

According to equation (4.24) the Â-operator can be expressed as
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Â = A+ δÂ (4.27)

and the time derivative of the noise as

dδÂ

dt
=
dÂ

dt
− dA

dt
. (4.28)

If one chooses dA
dt

to be

dA

dt
= − iV

2
√
N

[(2 + ε) Jx − iεJy]− iωA (4.29)

equation (4.28) reduces to

dδÂ

dt
= − iV

2
√
N

[
(2 + ε) δĴx − iεδĴy

]
− iωδÂ (4.30)

and dδÂ∗

dt
is hence given by

dδÂ∗

dt
=

iV

2
√
N

[
(2 + ε) δĴx + iεδĴy

]
+ iωδÂ∗. (4.31)

The time evolution of the fluctuations for the Ĵi terms is found analogously
and given in section (4.3.1)

Time derivative of the fluctuations

The time derivative of the fluctuations around the mean values are given in
the equations below.

46



dδÂ

dt
= − iV

2
√
N

[
(2 + ε) δĴx − iεδĴy

]
− iωδÂ (4.32)

dδÂ∗

dt
=

iV

2
√
N

[
(2 + ε) δĴx + iεδĴy

]
+ iωδÂ∗ (4.33)

dδĴx
dt

= − ω0

2
δĴy +

iV ε

2
√
N
δĴz (A− A∗) +

iV ε

2
√
N
Jz

(
δÂ− δÂ∗

)
− γ

2
δĴx

(4.34)

dδĴy
dt

=
ω0

2
δĴx −

V

2
√
N
δĴz (2 + ε) (A+ A∗)

− V

2
√
N
Jz (2 + ε)

(
δÂ+ δÂ∗

)
− γ

2
δĴy

(4.35)

dδĴz
dt

=
V

2
√
N
δĴy (2 + ε) (A+ A∗) +

V

2
√
N
Jy (2 + ε)

(
δÂ+ δÂ∗

)
− iV ε

2
√
N
δĴx (A− A∗)− iV ε

2
√
N
Jx

(
δÂ− δÂ∗

)
− γδĴz.

(4.36)

One is left with a set of coupled differential equations where all terms of
δX̂ · δX̂, where X̂ = Ĵi or X̂ = Â, where i ∈ {x, y, z} has been truncated.
It is hence possible to describe the time evolution of the fluctuation in terms
of a matrix, which satisfies

v̄ = M · v̄, (4.37)

where the vector v̄ is given by

v̄ =
(
δÂ δÂ∗ δĴx δĴy δĴz

)′
(4.38)

Matlab’s eigenvalue function enables one to diagonalize the matrix M and
obtain the eigenvalues. The eigenvalues give information on the stability of
the system and whether or not the system heat up. In later sections different
solutions’ stability is checked with this procedure and specifically to check
whether the system become less heaten up by introducing the parameter
ε. It is only the real part of the eigenvalues which are of interest, because
positive real values indicates the fluctuations grows exponentially with the
time and the system is hence unstable and if the real part of the eigenvalues
are negative the system is stable.
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4.3.2 Results from linearization of the fluctuations

The way to determinate whether a solution is stable or not is by diagonl-
ization of the matrix representing the time evolution of the fluctuations.
The largest value of the real part from the eigenvalues are plotted in figure
(4.24+4.25). It is seen that the real part of the eigenvalues are below zero
in the normal and superradiant phase, which means the solutions are stable.
In the chaotic regime some values of the noise are below and some above
zero, which indicates regions with stable solutions. The different background
colours represent the different phases the system is in. It is also seen that
right at the phase boundary between the normal and superradiant phase the
real part of the eigenvalues increase and in some cases goes above zero. This
indicates that just at the phase boundary the system is in general unstable.

Figure 4.24: This figure shows the largest real part of the eigenvalues from the
matrix representing the time evolution of the fluctuations. The background colors
represent the chaotic, superradiant and normal phase if one goes from left to right.
The parameters used to make this figure is ε = 0.0, ω = 0.5, ω0 = 0.1,Ω = 0.0, V =
1.5.
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Figure 4.25: This figure shows the largest real part of the eigenvalues from the
matrix representing the time evolution of the fluctuations. The background colors
represent the normal, superradiant and chaotic phase if one goes from left to right.
The parameters used to make this figure is ε = 0.0, ω = 0.5, ω0 = 0.1,Ω = 0.0, γ =
0.2.

4.3.3 Influence of the ε parameter

The system under investigation seems from above given analysis to have sta-
ble solutions in the normal and superradiant phase, but if an experimentalist
wants to perform this experiment an incresed heating cannot be excluded.
In order to reduce the heating of the system this thesis has suggested the
inclusion of the ε parameter, which models an inclusion of sideband cooling.
In figure (4.26) the largest real part of the eigenvalues of the fluctuations are
shown for three different ε and it is seen that larger ε’s reduce the fluctuations
in the stable phases. An exception for this is on the phase boundary, which
in its nature is unstable.
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Figure 4.26: Parameters: ε = 0.0, ω = 0.5, ω0 = 0.1,Ω = 0.0, γ = 0.2 .

4.3.4 Number of stable solutions

In figures (4.27 + 4.28) the number of solutions and stable solutions are
shown. In the normal phase only one solution occurs with Jz as the only
nonzero entry (Jz = −0.5). In the superradiant and chaotic three phases
occur of which two are stable in the superradiant phase. This superradiant
phase is a double degenerate phase in Jz, where the other terms have a sign
difference as the only difference between the two phases as seen in section
(4.2.4) about broken symmetry. This double degeneracy can be lifted by an
inclusion of the driving term Ωσ̂x, see section (4.1.2) with Jz-polynomials.

In table (4.1) one point from the phase diagram presented in figure (4.14)
is investigated. The first three columns presents the three solutions to the
steady state equations, where the second and third are stable in this regime.
The fourth and fifth column shows the results from the iterative solution
from the ode45-program, where the difference between the two columns is
the initial conditions. Column 4 start with Jx = 1 and column 5 with Jy = 1
(the rest are zero). It is observed that dependent on the initial conditions the
system evolves into either of the two stable phases. In column 6 a third itera-
tive solution from the ode45-program is shown where the system initially was
in the Jz = 1 state. This state is unstable so just the smallest perturbation
will force the system to develop into one of the two stable solutions.

In section (4.2.4) it was shown how the phase transition between the nor-
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Variable SSS1 SSS2 SSS3 IS1 IS2 IS3

A 0 0.1807 −0.1807 −0.1810 0.1808 0
Jx 0 −0.1506 0.1506 0.1505 −0.1506 0
Jy 0 0.3011 −0.3011 −0.3009 0.3015 0
Jz −0.5 −0.1736 −0.1736 −0.1746 −0.1725 −0.5

Table 4.1: The columns ”SSS” presents the steady state solutions and the columns
”IS 1 (2,3)” presents the results from the ode45 solution with 10,000 iterations,
where the initial conditions are for (IS 1): Jx = 1, for (IS 2): Jy = 1 and
for (IS 3): Jz = 1 and the other terms equal to zero. The parameter values are
γ = 0.2, V = 0.6, ε = 0.0, ω = 0.5, ω0 = 0.1,Ω = 0.0. REFER TO GREEN CROSS
IN SOME PHASE DIAGRAM??

mal and superradiant phase breaks the symmetry of the normal phase and
this section shows how at the phase transition between the superradiant and
chaotic phase the number of stable solutions decreases from two to zero.

Figure 4.27: This figure shows the number of solutions for different V ’s and γ’s.
In the normal phase there is one solution and in the superradiant and chaotic phae
three solutions occur. The parameters used to produce this figure is ε = 0.0, ω =
0.5, ω0 = 0.1,Ω = 0.0.
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Figure 4.28: This figure shows the number of stable solutions for different V ’s
and γ’s. In the normal phase there is one stable solution, in the superradiant
phase there is two stable solutions and in the chaotic phase there is none.. The
parameters used to produce this figure isε = 0.0, ω = 0.5, ω0 = 0.1,Ω = 0.0.
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Chapter 5

Extended Dicke model

In the previous chapter the standard Dicke model was investigated with the
inclusion of sideband cooling in form of the parameter ε. Several papers has
taken the Dicke model and investigated it in different setup (it could be in
optical cavity QED [8], trapped ions [25] or in open systems [10]) and inves-
tigated small changes of the above given pure Dicke model (equation (3.29)).

This thesis will also alter the Dicke model to a denoted ”extended” Dicke
model. The extended Dicke model adds an element to the standard Dicke
model. It introduces a new σ̂x-term to the Hamiltonian. The motivation to
do this is to add yet a competing term to the dissipation. It gives rise to new
phase transitions and this thesis investigates both this new phase transition
and also how the phase transition of the standard model behaves when one
cranks up the new σ̂x-term.

This chapter will initially start with the standard Dicke model with the intro-
duction of a small driving term Ωσ̂x. This will be followed by another limit
for Ω where the ionic term ω0 is so small it is neglected in the analysis. This
last section will be described in two parts, one with and one without side-
band cooling (in form of ε). The tools used in previous section will be used
again but they will not explained as thoroughly again and all the derivation
will in contrast to previous chapter come initially.

5.1 Equations of motion

This section will briefly present the equations of motion with the inclusion
of the new driving term
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Ĥdriving =
Ω

2

N∑
j=1

σ̂x (5.1)

which origin from another laser field interacting with the ions. A laser which
drive the |g〉 ↔ |e〉 transition with Rabi frequency Ω/2. With the inclusion
of this term the Hamiltonian now reads:

Ĥions =
ω0

2

N∑
j=1

σ̂z,j + ωâ†â+
Ω

2

N∑
j=1

σ̂x,j

+
V

2
√
N

N∑
j=1

[
σ̂+,j

(
(1 + ε)â+ â†

)
+ σ̂−,j

(
(1 + ε)â† + â

)] (5.2)

and the time evolution of the system can again be found by the master
equation approach as in last chapter and the equations of motion is now
given by:

Ȧ = − iV

2
√
N

((2 + ε)Jx − iεJy)− iωA (5.3)

J̇x = −ω0

2
Jy +

iV ε

2
√
N
Jz (A− A∗)− γ

2
Jx (5.4)

J̇y = −Ω

2
Jz +

ω0

2
Jx −

V

2
√
N
Jz (2 + ε) (A+ A∗)− γ

2
Jy (5.5)

J̇z =
Ω

2
Jy +

V

2
√
N
Jy (2 + ε) (A+ A∗)− iV ε

2
√
N
Jx (A− A∗)− γ

(
Jz +

1

2

)
.

(5.6)

This section will investigate the steady state solutions of above equations, as
was the case in the last chapter.

5.2 Fluctuations

As in previous section this section adds the driving term to the derivation of
the fluctuations from section (4.3) and the equations describing the linearized
time evolution of the fluctuations will with this addition be given by:
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dδÂ

dt
= − iV

2
√
N

[
(2 + ε) δĴx − iεδĴy

]
− iωδÂ (5.7)

dδÂ∗

dt
=

iV

2
√
N

[
(2 + ε) δĴx + iεδĴy

]
+ iωδÂ∗ (5.8)

dδĴx
dt

= − ω0

2
δĴy +

iV ε

2
√
N
δĴz (A− A∗) +

iV ε

2
√
N
Jz

(
δÂ− δÂ∗

)
− γ

2
δĴx

(5.9)

dδĴy
dt

= − Ω

2
δĴz +

ω0

2
δĴx −

V

2
√
N
δĴz (2 + ε) (A+ A∗)

− V

2
√
N
Jz (2 + ε)

(
δÂ+ δÂ∗

)
− γ

2
δĴy

(5.10)

dδĴz
dt

=
Ω

2
δĴy +

V

2
√
N
δĴy (2 + ε) (A+ A∗) +

V

2
√
N
Jy (2 + ε)

(
δÂ+ δÂ∗

)
− iV ε

2
√
N
δĴx (A− A∗)− iV ε

2
√
N
Jx

(
δÂ− δÂ∗

)
− γδĴz.

(5.11)

5.3 Jz-polynomial

In the previous chapter Ω was neglected except in figure (4.3), where it was
shown how a term Ωσ̂x could split the degeneracy of one of the null points
in the Jz-polynomial. This term was included already there to show one
possible benefit of the inclusion of a driving term. Equation (4.15) for the
Jz-polynomal without Ω is changed into equation (5.12) with the inclusion
of the driving term.

0 =−
(
Jz +

1

2

)[
2γδ2J4

z + 4βδγJ3
z + 2γα2

]
−
(
Jz +

1

2

)[
4γαβJz + 4γαδJ2

z + 2γβ2J2
z

]
+
[
Ω2γωβ + (2 + ε)2V 2Ω2γωω0/N − V 2ε2γωω0Ω2/N

]
J2
z

+
[
Ω2γωδ − V 4ε4Ω2γ/N2 + Ω2γ (2 + ε)2 V 4ε2/N2

]
J3
z + Ω2γωαJz,

(5.12)

where
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α = ω
[
ω2

0 + γ2
]
, β = V 2ω0

[
ε2 + (2 + ε)2

]
/N, δ = (2 + ε)2V 4ε2/ωN2

(5.13)

In figure (5.1) a Jz-polynomial is shown where a driving term Ω of same mag-
nitude as the other parameters is included (in contrast to the Jz-polynomials
in section (4.1.2)). It is seen how the Jz-values of V

√
N = 0.16 has changed

from −N/2 to around −0.2N for the null point, but there is still only one
solution for this value of V . For larger V ’s three solutions are shown, the
doubledegeracy is hence lifted and the values of Jz is split. It is also seen that
the splitting between the second and third null point at some point starts
to shrink and for even larger values of V the knot will be below zero and
there are only one null point again. The symbolic solve approach finds the
solutions easier with the inclusion of Ω, but it is more difficult for the fsolve
approach. The numerics run hence faster for ε = 0 in which case matlab was
able to solve the steady state equations symbolic.

Figure 5.1: Parameters: ε = 0.0, ω = 0.5, ω0 = 0.1,Ω = 0.20. Red: analytical
solution without ε. Blue with ε. Both without Ω.

5.4 Regime 1: ω0 6= 0

This section presents how the phase diagram is changed from what was seen
in chapter (4) when one includes a driving term Ωσ̂x of comparable magnitude
with the ions splitting energy. The figures are produced in the same manner
as in previous chapter, just with new parameters.
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5.4.1 Phase Diagrams

In figure (5.2) a phase diagram is shown with the same parameter values as
used in chapter (4), but with the inclusion of a driving term Ω = 0.2. It is
seen that the phase boundary is moved out in the sense that a larger dissi-
pation term is needed in order to compete with the x̂-direction. The same
chaotic phase which was seen in the previous chapter is still included. Save
for this change of where the phase boundary is nothing new is immediately
added to the phase diagram, even for relative large values of Ω (see figure
(5.4(a)+5.4(b))). The green dashed line indicate where the phase boundary
were with the same parameter values, but with Ω = 0, according to equation
(4.21).

In figure (5.3) the same plot as the one shown in figure (5.2) but where
the points have been found with matlab’s fsolve instead of the ode45. The
same overall behaviour is seen in both figures, but in the fsolve figure ann
odd line is shown. This will be discussed further in section (5.4.2).

Figure 5.2: Parameters: ε = 0.0, ω = 0.5, ω0 = 0.1,Ω = 0.20. Red: analytical
solution without ε. Blue with ε. Both without Ω.
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Figure 5.3: Parameters: ε = 0.0, ω = 0.5, ω0 = 0.1,Ω = 0.20. solve approach

Two other examples are shown here:

(a) (b)

Figure 5.4: Parameters: ε = 0.0, ω = 0.5, ω0 = 0.1 and left Ω = 0.10 and right
Ω = 0.50

5.4.2 Number of (stable) solutions

This section presents three set of two figures, each set consists of a figure with
the number of solutions and a figure with the number of stable solutions. In
contrast to previous section it is clear that the inclusion of Ω not only changes
the position of the phase boundary but alters the underlying physics. At the
boundary between the superradiant and chaotic phase there is one stable
solution in contrast to the superradiant (with two stable solution) and the
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chaotic phase (with zero stable solutions) and for Ω = 0.5 a new area with
no stable solutions arise.

(a) (b)

Figure 5.5: Parameters: ε = 0.0, ω = 0.5, ω0 = 0.1,Ω = 0.10. Left number of
solutions, right number of stable solutions.

(a) (b)

Figure 5.6: Parameters: ε = 0.0, ω = 0.5, ω0 = 0.1,Ω = 0.20. Left number of
solutions, right number of stable solutions.
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(a) (b)

Figure 5.7: Parameters: ε = 0.0, ω = 0.5, ω0 = 0.1,Ω = 0.50. Left number of
solutions, right number of stable solutions.

5.4.3 Jz(t)-graphs

In this section four points from figure (5.6(b)) is shown, they are indiated
with red dots (MISSES) and are chosen because they represent the four dif-
ferent regimes seen for γ = 0.1.

It is seen in figures (5.8(a)-5.8(d)) that the areas which in the standard
Dicke model was referred to as normal and superradiant phase dampens and
the system develop into a steady state. In the newly arisen area between the
superradiant and chaotic phase the system keeps oscillating even for large
time intervals. This might be due to the fact that it is around a phase tran-
sition where the relaxation time is much longer and the system only for very
large time scales dampens. This explain why the previous section showed
there exist one stable solutions and why a new line was shown in the middle
of the superradiant phase in figure (5.3). The time evolution in the chaotic
regime is still chaotic as seen in previous chapter.
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(a) (b)

(c) (d)

Figure 5.8: Parameters: ε = 0.0, ω = 0.5, ω0 = 0.1,Ω = 0.0, γ = 0.1. Left up:
V = 0.25 Left down: V = 0.95 Right up: V = 0.75 Right down: V = 1.5.

5.4.4 Stability

The path along the two lines shown in figure (5.6(b)) (MISSES) are here taken
and the largest real value from the eigenvalues from the matrix describing the
time evolution of the fluctuations is shown in figures (5.9+5.10). From here
it is seen that the normal and superradiant phase are stable and the chaotic
and new region between superradiant and chaotic phase have unstable and
stable regions.

61



Figure 5.9: Parameters: ε = 0.0, ω = 0.5, ω0 = 0.1,Ω = 0.2, V = 1.5.

Figure 5.10: Parameters: ε = 0.0, ω = 0.5, ω0 = 0.1,Ω = 0.2, γ = 0.25.

5.5 Regime 2: ω0 = 0, ε 6= 0

In the first part of this chapter it was shown how the introduction of a driv-
ing term Ωσ̂x of same magnitude as the parameters used in chapter (4) adds
a new region between the superradiant and chaotic phase compared to the
standard Dicke model.

In this second part of this chapter a new regime is investigated; the regime
where one can neglect the ionic term ω0. This regime is investigated in two
parts, one with inclusion of the sideband cooling parameter ε (this section)
and one without (section (5.6)).
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5.5.1 Phase Diagrams

In figure (5.11) a phase diagram is shown in the regime where the ionic term
is neglected and sideband cooling is included. A first order phase transition
is seen when one scan over γ for values of V above about 0.4. For V < 0.4 it
is not obvious from the phase diagram what happens.

Figure 5.11: Parameters: ε = 0.05, ω = 0.1, ω0 = 0.0,Ω = 0.1. Red: analytical
solution without ε. Blue with ε. Both without Ω.

In order to get an understanding of what goes on figures (5.12(a)-5.12(d))
show the time evolution of the collective angular momentum operators for
different points in the phase diagram (indicated with small green crosses in
the phase diagram). This is followed by figures () which shows the largest
real part of the eigenvalues of the matrix describing the fluctuations (analo-
gously to XX in section YY).

NEW

This phase diagram will be investigated by the tools described in the previous
chapter. Four points indicated with green crosses will be chosen for further
analysis and they will be described in the following subsections, each named
after whether the values of γ and V are relatively small or large.

5.5.2 Jz(t)-graphs

Figures in this section are split into subsubsections depending on the regime
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(a) (b)

(c) (d)

(e)

Figure 5.12: Parameters: ε = 0.05, ω = 0.1, ω0 = 0.0,Ω = 0.1. 5.12(a):
γ = 0.02, V = 0.8, 5.12(b): γ = 0.02, V = 0.8 (zoom of 5.12(a)), 5.12(c):
γ = 0.15, V = 0.8, 5.12(d): γ = 0.15, V = 0.1, 5.12(e): γ = 0.02, V = 0.1

5.5.3 Real values of eigenvalues of fluctuations

In this subsection four different paths are taken in the phase diagram shown
in figure (5.11), connecting the four points indicated with green crosses. In
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each scan the largest real part of the eigenvalues of the matrix describing the
time evolution of the fluctuations is shown.

(a) (b)

(c) (d)

(e)

Figure 5.13: Parameters: ε = 0.05, ω = 0.1, ω0 = 0.0,Ω = 0.1. 5.13(a): γ = 0.15,
5.13(b): V = 0.8, 5.13(c): γ = 0.02, 5.13(d): V = 0.1, 5.13(e): zoom of 5.13(b).
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Scan over γ, V small V, γ

(a) (b)

(c)

Figure 5.14: Parameters: ε = 0.05, ω = 0.1, ω0 = 0.0,Ω = 0.1. 5.14(a): γ = 0.01,
5.14(b): γ = 0.02, 5.14(c): γ = 0.05

5.6 Regime 3: ωo = 0, ε = 0

In previous subsection the regime with neglectable ω0-term was investigated
with the inclusion of sideband cooling in form of the ε parameter. In figure
(5.15) a phase diagram is shown in the same regime, but with ε = 0.
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Figure 5.15: Parameters: ε = 0.0, ω = 0.1, ω0 = 0.0,Ω = 0.1.

67



Chapter 6

The chaotic regime

Write something in general about chaos and this phase

6.1 Chaotic behaviour in small time scales

In section (4.3.2) and for instance figure (4.24) in the chaotic phase it is
seen that the largest real part of the eigenvalues of the matrix representing
the time evolution of the fluctuations sometimes are positive ang sometimes
negative. It is hence clear that for some values of V and γ there are stable
solutions in the chaotic phase. (does this have a name?)

This behaviour is not covered in either the ode45 or the fsolve approach,
see figures (4.5+4.6). In figure () a zoom of the chaotic phase is shown. In this
zoom the steps in V in the phase diagram are much smaller (∆V = 0.001
compared to ∆V = 0.025). It is here seen that for small steps the stable
solutions in the chaotic phase are included.

6.2 Strange attractors

In figures (6.1+6.2) a plot of the phase diagram with the inclusion of a
driving term Ω = 1.0 where each point origin from the ode45 approach. The
difference between the two plots is the number of iterations made. It is clear
that they give similar results. In extension to the chaotic behaviour which
have been seen previously they also show regions with strange attractors, see
next section.
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Figure 6.1: Parameters: ε = 0.05, ω = 0.5, ω0 = 0.1,Ω = 1.0. Red: analytical
solution without ε. Blue with ε. Both without Ω. Number of iterations (ode45)
changed to 3,000. Initial condition Jx = 1

Figure 6.2: Parameters: ε = 0.05, ω = 0.5, ω0 = 0.1,Ω = 1.0. Red: analytical
solution without ε. Blue with ε. Both without Ω. Number of iterations (ode45)
changed to 5,000. Initial condition Jx = 1

explain strange attractors/Lyaponov?
show zoom of the graphs
chaos regime increases with Omega possible to get thase transition oc-

curence with Omega (to be in section chaos?) include a graph with small
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Omega

Figure 6.3: Parameters: ε = 0.0, ω = 0.5, ω0 = 0.1,Ω = 1.000. Red: analytical
solution without ε. Blue with ε. Both without Ω.

Figure 6.4: Parameters: ε = 0.05, ω = 0.5, ω0 = 0.1,Ω = 1.000. Red: analytical
solution without ε. Blue with ε. Both without Ω.
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Figure 6.5: Parameters: ε = 0.0, ω = 0.5, ω0 = 0.1,Ω = 1.000. Red: analytical
solution without ε. Blue with ε. Both without Ω. fsolve

Figure 6.6: Parameters: ε = 0.05, ω = 0.5, ω0 = 0.1,Ω = 0.0.
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Figure 6.7: Parameters: ε = 0.05, ω = 0.5, ω0 = 0.1,Ω = 0.0. fsolve
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Chapter 7

Conclusion and Outlook

7.1 Conclusion

This thesis has overall three different schemes it has investigated; the stan-
dard Dicke model, an observed chaotic phase when one includes dissipation
to the standard Dicke model and an extended Dicke model where a driving
term has been included.

7.1.1 The Standard Dicke Model

The standard Dicke model was investigated with inclusion of dissipation. It
has been shown the phase diagrams are time independent and the the ap-
proach to seek steady state solutions is hence a satisfactory approach, except
for an observed chaotic phase.

First of all has the second order phase transition known for the standard
Dicke model been observed, where the phase boundary for the simulation
follows the analytical expression and a critical value for V is found, where
no phase transition occurs for values of V < Vcritical. This was as expected
and has been observed previously.

The system has been shown to have stable solutions in the normal and super-
radiant phase. One solution which is stable in the normal and three solution
of which two are stable in the super-radiant phase.

This phase transition also induce a broken symmetry, where Jx, Jy and A
goes from the normal phase with only one solution to a superradiant phase,
where they can have different values. In the superradiant phase three solu-
tions exist, but only two of them are stable. Which state the system ends in
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depends on the initial conditions.

The Hamiltonian used in this thesis two extra terms to the standard Dicke
model was introduced. One of the term ε models the sideband cooling and
Ω is an extra driving term. In the case where sideband cooling has been
added to the standard Dicke model this thesis has shown that this increase
the stability of the system, but it also alters the phase diagrams. When ε is
included not only a lower bound (the mentioned Vcritical) exists, but also an
upper bound occur. For values of V > Vupper bound no phase transition occurs
(as in the case of V < Vlower bound).

7.1.2 The Extended Dicke Model

In the case where a driving term Ω is added to the standard Dicke model two
different regimes has been investigated. First in the case where the driving
term is on the same magnitude as the terms used in the analysis of the stan-
dard Dicke model. Here it was shown that the inclusion of a driving term
only changes the position of the phase boundary - it smoothens the phase
transitions further out, but leave the system otherwise unchanged, save for a
further break of symmetry. In the standard Dicke model the phase transition
from a normal to a superradiant phase induced a broken symmetry, but the
values of for instance Jx in the stable solutions in the superradiant phase were
±x, where x is the value of Jx for a given set of parameters. The inclusion
of Ω removes this symmetry. This was also seen in the Jz-polynomials where
the inclusion of Ω lifts the degeneracy of one of the solutions.

Secondly a regime with a neglectable ionic ω0 = 0. Here the phase dia-
gram strongly depends on whether sideband cooling is included or not. In
the case with inclusion of sideband cooling a first order phase transition is
observed between a stable normal phase and a unstable superradiant phase.
But the existence of the phase transition depends on the parameters and for
values below a critical Vcritical no phase transition occur. It is possible to go
from one state to the other by going around this critical point.

In the case without sideband cooling, but still in the regime ω0 = 0 an
interesting, but unfortunately not well understood phase diagram comes out.

7.1.3 The Chaotic Phase

In addition to the normal and superradiant phase known for the standard
Dicke model a chaotic phase was also observed. In the chaotic phase no sta-
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ble solutions exist and the values of for instance Jz keeps fluctuating. The
values saved if one simulates the evolution of the system is hence random as
seen in the Jz(t) figures.

The chaotic phase for the extended Dicke model with relatively large val-
ues of Ω exhibit an interesting new phenomena, which could be a strange
attractor.

7.2 Outlook

This thesis has shown the existence of different phases and first and second
order phase transitions, critical points, etc.

If one should investigate this further it would be obvious to check whether
the states are squeezed, as in the case of Johathan Home. It would also be
obvious to try to see how the system develops for a finite number of ions.
Jonathan Home is currently able to make this experiment with one ion, but
could make it with 2-3 ions. The experimantal group in Innsbruck has also a
setup which is covered by the Hamiltonian described by this thesis and can
realize this experiment with 5 ions.

It would also be of huge interest to understand the phases seen in the chapter
about the extended Dicke model. This thesis has been able to show XX, but
further questions arise, such as XX.
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This thesis has investigated the standard Dicke model and how the physics
of the system change for an extension..

This thesis has shown the known second order phase transition in the
Dicke model.

• 2nd order phase transition and analytical expression for the phase bound-
ary γ(V ) and the critical V

• Shown upper limit on V if ε is included

• Shown a chaotic phase

• Jz-T graph chaotic phase

• Broken symmetry

• Fluctuations, linearization and epsilon, stable solutions

• chaotic phase: small and large Omega + strange attractors

• extended ...‘0
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Appendix A

Mean field equations

The Hamiltonian of the system is given by

Ĥions =
ω0

2

N∑
j=1

σ̂z,j + ωâ†â+
Ω

2

N∑
j=1

σ̂x,j (A.1)

+
V

2
√
N

N∑
j=1

[
σ̂+,j

(
(1 + ε)â+ â†

)
+ σ̂−,j

(
(1 + ε)â† + â

)]
. (A.2)

The time evolution of the system can be described by the master equation
approach where an observable operator evolves according to [22]:

dx̂

dt
= i
[
ĤS, x̂

]
+ L(x̂), (A.3)

where ~ = 1, x̂ is the observable under study and the Liouvillian operator
L(x̂) can be expressed in the Heisenberg picture in which case it takes the
form

L(x̂) = −
∑
k

γk
2

(
ĉ†kĉkx̂+ x̂ĉ†kĉk − 2ĉkx̂ĉ

†
k

)
(A.4)

If one uses the ensemble variables Ji, A introduced in section (3.1.6) and
investigates how they develop in time one can use the above approach. With
ĉk = σ̂− and γk = γ one obtains the following for the operator Jx and in the
following Jy, Jz and A as well.
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J̇x = 〈
N∑
j=1

σ̇x,j〉 =i〈

[
H,

N∑
j=1

σ̂x,j

]
〉 (A.5)

+ 〈
N∑
j=1

γ

2
[2σ̂+,jσ̂x,jσ̂−,j − σ̂+,jσ̂−,jσ̂x,j − σ̂x,jσ̂+,jσ̂−,j]〉

(A.6)

=i〈

[
N∑
j=1

[
ω0

2
σ̂z,j +

iV ε

2
√
N
σ̂y,j

(
â− â†

)]
,

N∑
j=1

σ̂x,j

]
〉 (A.7)

+
γ

2
〈
N∑
j=1

[2σ̂+,jσ̂x,jσ̂−,j − σ̂+,jσ̂−,jσ̂x,j − σ̂x,jσ̂+,jσ̂−,j]〉

(A.8)

=〈
N∑
j=1

[
−ω0

2
σ̂y,j +

iV ε

2
√
N
σ̂z,j

(
â− â†

)]
〉 (A.9)

− γ

2
〈
N∑
j=1

σ̂x,j〉 (A.10)

=− ω0

2
Jy +

iV ε

2
√
N
Jz (A− A∗)− γ

2
Jx (A.11)
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J̇y = 〈
N∑
j=1

σ̇y,j〉 =i〈

[
H,

N∑
j=1

σ̂y,j

]
〉 (A.12)

+ 〈
N∑
j=1

γ

2
[2σ̂+,jσ̂y,jσ̂−,j − σ̂+,jσ̂−,jσ̂y,j − σ̂y,jσ̂+,jσ̂−,j]〉

(A.13)

=i〈

[
N∑
j=1

[
Ω

2
σ̂x,j +

ω0

2
σ̂z,j

]
,

N∑
j=1

σ̂y,j

]
〉 (A.14)

+ i〈

[
N∑
j=1

[
V

2
√
N
σ̂x,j (2 + ε)

(
â+ â†

)]
,
N∑
j=1

σ̂y,j

]
〉 (A.15)

− γ

2
〈
N∑
j=1

σ̂y,j〉 (A.16)

=〈
N∑
j=1

[
−Ω

2
σ̂z,j +

ω0

2
σ̂x,j −

V

2
√
N
σ̂z,j (2 + ε)

(
â+ â†

)]
〉

(A.17)

− γ

2
〈
N∑
j=1

σ̂y,j〉 (A.18)

=− Ω

2
Jz +

ω0

2
Jx −

V

2
√
N
Jz (2 + ε) (A+ A∗)− γ

2
Jy (A.19)

79



J̇z = 〈
N∑
j=1

σ̇z,j〉 =i〈

[
H,

N∑
j=1

σ̂z,j

]
〉 (A.20)

+ 〈
N∑
j=1

γ

2
[2σ̂+,jσ̂z,jσ̂−,j − σ̂+,jσ̂−,jσ̂z,j − σ̂z,jσ̂+,jσ̂−,j]〉

(A.21)

=i〈

[
N∑
j=1

[
Ω

2
σ̂x,j +

V

2
√
N

[
σ̂x,j(2 + ε)(â+ â†) + iεσ̂y,j(â− â†)

]]
,

N∑
j=1

σ̂z,j

]
〉

(A.22)

− γ

2
〈
N∑
j=1

(2σ̂z,j + 1)〉 (A.23)

=〈
N∑
j=1

[
Ω

2
σ̂y,j +

V

2
√
N

[
σ̂y,j(2 + ε)(â+ â†)− iεσ̂x,j(â− â†)

]]
〉

(A.24)

− γ

2
〈
N∑
j=1

(2σ̂z,j + 1)〉 (A.25)

=
Ω

2
Jy +

V

2
√
N
Jy (2 + ε) (A+ A∗)− iV ε

2
√
N
Jx (A− A∗)− γ

(
Jz +

N

2

)
(A.26)

Ȧ = 〈ȧ〉 =i〈[H, â]〉 (A.27)

=i〈

[
N∑
j=1

[
V

2
√
N

[(2 + ε) σ̂x,j − iεσ̂y] â†
]

+ ωâ†â, â

]
〉 (A.28)

=〈
N∑
j=1

[
− iV

2
√
N

[(2 + ε)σ̂x,j − iεσ̂y,j]
]
− iωâ〉 (A.29)

=− iV

2
√
N

((2 + ε)Jx − iεJy)− iωA (A.30)

All of the equations of motion are collected here:
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Ȧ = − iV

2
√
N

((2 + ε)Jx − iεJy)− iωA (A.31)

J̇x = −ω0

2
Jy +

iV ε

2
√
N
Jz (A− A∗)− γ

2
Jx (A.32)

J̇y = −Ω

2
Jz +

ω0

2
Jx −

V

2
√
N
Jz (2 + ε) (A+ A∗)− γ

2
Jy (A.33)

J̇z =
Ω

2
Jy +

V

2
√
N
Jy (2 + ε) (A+ A∗)− iV ε

2
√
N
Jx (A− A∗)− γ

(
Jz +

N

2

)
(A.34)
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Appendix B

Fluctuations around the mean

So far a mean field approach has been used. It is interesting to investigate the
fluctuations around the mean in order to get an understanding of the system’s
stability. In this section the noise is assumed to be linear around the mean
and a linearization of the noise is made followed by a diagonalization of the
matrix describing the time evolution. The formal way to describe the time
evolution is

v̄ = M · v̄, (B.1)

where v̄ is a vector representing the fluctuations around the mean of the
collective spin operators {Ji, A} and M is the matrix describing the time
evolution.

B.1 Linearization of the noise

An operator can be written as an expectation value and its fluctuations
around it

Ô = O + δÔ, (B.2)

where Ô is the operator, O the expectation value and δÔ is the fluctuation.
If one take the derivative of this equation with regards to t one obtains

dÔ

dt
=
dO

dt
+
dδO

dt
(B.3)

which enables one to get an equation of the time derivative of the fluctuations
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dδO

dt
=
dÔ

dt
− dO

dt
. (B.4)

In the following the noise operators δÂ and δĴi will be deduced.

B.2 δÂ, δÂ∗-terms

According to equation (B.2) the Â-operator can be expressed as

Â = A+ δÂ (B.5)

and the time derivative of the noise as

dδÂ

dt
=
dÂ

dt
− dA

dt
. (B.6)

If one chooses dA
dt

to be

dA

dt
= − iV

2
√
N

[(2 + ε) Jx − iεJy]− iωA (B.7)

equation (B.6) reduces to

dδÂ

dt
= − iV

2
√
N

[
(2 + ε) δĴx − iεδĴy

]
− iωδÂ (B.8)

and dδÂ∗

dt
is hence given by

dδÂ∗

dt
=

iV

2
√
N

[
(2 + ε) δĴx + iεδĴy

]
+ iωδÂ∗ (B.9)

B.3 δĴi-terms

B.3.1 δĴx-term

According to equation (B.2) the Ĵx-operator can be expressed as
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Ĵx = Jx + δĴx (B.10)

and the time derivative of the noise as

dδĴx
dt

=
dĴx
dt
− dJx

dt
. (B.11)

If one chooses dJx
dt

to be

dJx
dt

= −ω0

2
Jy +

iV ε

2
√
N
Jz (A− A∗)− γ

2
Jx (B.12)

equation (B.11) equals

dδĴx
dt

= −ω0

2
δĴy +

iV ε

2
√
N
δĴz (A− A∗) +

iV ε

2
√
N
Jz

(
δÂ− δÂ∗

)
− γ

2
δĴx

(B.13)

B.3.2 δĴy-term

According to equation (B.2) the Ĵy-operator can be expressed as

Ĵy = Jy + δĴy (B.14)

and the time derivative of the noise as

dδĴy
dt

=
dĴy
dt
− dJy

dt
. (B.15)

If one chooses dJy
dt

to be

dJy
dt

= −Ω

2
Jz +

ω0

2
Jx −

V

2
√
N
Jz (2 + ε) (A+ A∗)− γ

2
Jy (B.16)

equation (B.15) equals

dδĴy
dt

= −Ω

2
δĴz +

ω0

2
δĴx −

V

2
√
N
δĴz (2 + ε) (A+ A∗)− V

2
√
N
Jz (2 + ε)

(
δÂ+ δÂ∗

)
− γ

2
δĴy

(B.17)
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B.3.3 δĴz-term

According to equation (B.2) the Ĵz-operator can be expressed as

Ĵz = Jz + δĴz (B.18)

and the time derivative of the noise as

dδĴz
dt

=
dĴz
dt
− dJz

dt
. (B.19)

If one chooses dJz
dt

to be

dJz
dt

=
Ω

2
Jy +

V

2
√
N
Jy (2 + ε) (A+ A∗)− iV ε

2
√
N
Jx (A− A∗)− γ

(
Jz +

N

2

)
(B.20)

equation (B.19) equals

dδĴz
dt

=
Ω

2
δĴy +

V

2
√
N
δĴy (2 + ε) (A+ A∗) +

V

2
√
N
Jy (2 + ε)

(
δÂ+ δÂ∗

)
(B.21)

− iV ε

2
√
N
δĴx (A− A∗)− iV ε

2
√
N
Jx

(
δÂ− δÂ∗

)
− γδĴz (B.22)

B.4 Summary

The time derivative of the fluctuations of the mean values are given in the
equations below.
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dδÂ

dt
= − iV

2
√
N

[
(2 + ε) δĴx − iεδĴy

]
− iωδÂ (B.23)

dδÂ∗

dt
=

iV

2
√
N

[
(2 + ε) δĴx + iεδĴy

]
+ iωδÂ∗ (B.24)

dδĴx
dt

= − ω0

2
δĴy +

iV ε

2
√
N
δĴz (A− A∗) +

iV ε

2
√
N
Jz

(
δÂ− δÂ∗

)
− γ

2
δĴx

(B.25)

dδĴy
dt

= − Ω

2
δĴz +

ω0

2
δĴx −

V

2
√
N
δĴz (2 + ε) (A+ A∗)

− V

2
√
N
Jz (2 + ε)

(
δÂ+ δÂ∗

)
− γ

2
δĴy

(B.26)

dδĴz
dt

=
Ω

2
δĴy +

V

2
√
N
δĴy (2 + ε) (A+ A∗) +

V

2
√
N
Jy (2 + ε)

(
δÂ+ δÂ∗

)
− iV ε

2
√
N
δĴx (A− A∗)− iV ε

2
√
N
Jx

(
δÂ− δÂ∗

)
− γδĴz

(B.27)
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